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Abstract 
Systematic Reviews of diagnostic test accuracy (DTA) studies are increasingly comparing the accuracy 

of multiple tests to facilitate selection of the best performing test(s). Common approaches to compare 
multiple tests include multiple meta-analyses or meta-regression with the test type as a covariate. Within-
study correlation between tests are typically not considered in these approaches. Several DTA network 
meta-analysis (DTA-NMA) models have been suggested to compare the accuracy of multiple index tests 
in a single model. Our aim was to identify all DTA-NMA methods for comparing the accuracy of multiple 
diagnostic tests.

We conducted a methodological review of the DTA-NMA models. We searched PubMed, Web of Science, 
and Scopus from inception until the end of July 2019. Studies of any design published in English were 
eligible for inclusion. We also reviewed relevant unpublished material. The methods were applied in a 
network of 37 studies comparing human papillomavirus (HPV) DNA, mRNA, and cytology (ASCUS+/ LSIL+ 
threshold) for the diagnosis of invasive cervical cancer (CIN2+).

We included 10 relevant studies, and identified four Bayesian hierarchical DTA-NMA methods including 
the 2x2 data table for each index test. Using CIN2+ as a case study, we applied the DTA-NMA methods to 
determine the most promising test, in terms of sensitivity and specificity. All models showed the mRNA test 
as the most accurate test followed by HPV DNA: relative sensitivity compared to the cytology test 1.36-1.39 
and 1.33-1.35, respectively. However, both tests had similar or worse specificity than cytology (relative 
specificity range in mRNA 0.96-0.98 and in HPV-DNA 0.94-0.95). Both sensitivity and specificity of mRNA 
were associated with the highest uncertainty across all models (widest 95% credible intervals 0.68-0.97 
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and 0.74-0.94, respectively). Precision and estimation of between-study and within-study variability vary 
across models, which might be due to the differences in the key properties of the models.

Different DTA-NMA methods may lead to different results. The choice of a DTA-NMA method for the 
comparison of multiple diagnostic tests may depend on the available data, e.g., threshold data, as well as 
on clinically-related factors.

Key words: Network meta-analysis, diagnostic test, accuracy, indirect comparison, colposcopy

combining both direct and indirect evidence within 
a single model is often used to inform clinical prac-
tice4-6. However, methods for conducting NMA of 
interventions cannot be applied directly for the 
comparison of multiple tests. This is mainly due to 
the design differences between studies comparing 
index tests and studies comparing interventions. 
Two key differences are that DTA-NMA focuses on 
two quantities, sensitivity and specificity, whereas 
NMA of interventions models a single effect size (e.g., 
odds ratio) and that intervention studies compare 
independent groups of patients, whereas DTA evalu-
ate the same individuals across tests.

Several meta-analytical models were introduced 
for the comparison of the accuracy of at least two 
index tests against a reference standard in recent 
years7-17. NMA compares the accuracy of at least three 
index tests in a single model. DTA-NMA allows for 
obtaining more precise estimates, drawing inference 
on the accuracy of tests that have not been compared 
to each other before, and ranking tests according to 
their diagnostic accuracy (e.g. sensitivity [the prob-
ability of a test being positive when someone has the 
disease], specificity [the probability of a test being 
negative when someone does not have the disease])18. 

Cervical cancer is the 4th most frequent cancer 
in women worldwide, including Greece, and can 
impact a woman’s reproductive years19. In 2018, 
approximately 311,000 women died from cervical 
cancer19. Since the development of the Papanicolaou 

Introduction
Clinicians and healthcare professionals often 

consult diagnostic test accuracy (DTA) meta-analyses 
to make informed decisions regarding the optimum 
test to choose and use for a given setting1-3. Most 
DTA meta-analyses focus on the accuracy of a single 
test (i.e., an index test vs. the reference standard). 
Although direct test comparisons (head-to-head 
DTA comparisons) have the most valid design, they 
are not always available. The accuracy of different 
tests can be compared indirectly through a common 
comparator test. 

When multiple tests exist for a given condition, 
selection of the best performing test is usually 
achieved by doing multiple meta-analyses and 
then comparing the results (i.e., pooled estimates 
and confidence intervals [CIs]). However, the tests 
in this approach are compared between different 
meta-analyses rather than within a single model, 
and there is no ‘borrowing strength’ across stud-
ies, especially when comparative studies of the 
underlying tests exist. Another popular approach 
is the meta-regression with the test type used 
as a covariate. This model statistically compares 
the accuracy of two or more index tests within a 
single meta-analysis, but it does not account for the 
within-study correlation between tests (i.e., due to 
the inclusion of the same individuals across tests) 
and the variance-covariance matrix is structured 
assuming independence between tests. 

Network meta-analysis (NMA) of interventions 
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test, screening has been used to diagnose cervi-
cal cancer at a stage that can be treated. In most 
cases, human papillomavirus (HPV) infection will 
be eliminated by the immune system. However, 
when the immune system does not clear the virus, 
HPV infection may develop abnormal cervical cells, 
known as cervical ‘precancer’20. These lessions can 
progress to cervical cancer if left untreated21. To this 
end, several studies were conducted to identify the 
best screening strategy for cervical cancer, including 
tests of cytology, HPV-DNA, mRNA, and co-testing 
(Pap test + HPV DNA or mRNA test)21,22. 

To date, no studies have evaluated the accuracy of 
multiple tests for the diagnosis of cervical cancer in a 
single model to indicate the best diagnostic strategy. 
A hierarchy according to the test accuracy would 
help avoid unnecessary screening, colposcopy, and 
treatment (e.g., surgery) associated with undesirable 
effects, such as preterm births and miscarriages at 
2nd trimester22. 

In this study we aim to summarize the DTA-NMA 
methods for at least three index tests presented in 
the methodological literature17. We illustrate the 
application of the methods using a real data set for 
the comparative accuracy of HPV DNA, HPV mRNA, 
and cytology tests for cervical cancer.

Methods

Review methods
We searched PubMed, Web of Science, and Scopus 

from inception until the end of July 2019 to identify 
full text research articles that describe a DTA-NMA 
method for three or more index tests. Since joint 
classification of the results from one index against 
the results of another index test amongst those with 
the target condition and amongst those without the 
target condition are rarely reported in DTA studies, 
we included only methods requiring the 2x2 tables 
of the results of each index test against the reference 

standard (i.e., number of true positives, true nega-
tives, false positives, and false negatives). Hence, we 
excluded DTA-NMA methods requiring the complete 
cross-tables (i.e., 2x4 joint classification tables). We 
scanned reference lists of the included studies for 
potentially relevant articles and conference abstracts, 
as well as searched on the web search engine Google. 
We used our networks of professional collaborations 
for additional studies, dissertations and ongoing 
research. Eligible studies were published and unpub-
lished studies written in English that reported the 
development of a DTA-NMA method. The PubMed 
search strategy is included in Appendix 1.

Following a calibration exercise, pairs of reviewers 
(ST, SZ, IP, AAV) independently screened each title 
and abstract of the literature search results (level 1) 
and the full-text of potentially relevant articles (level 
2) using the abstrackr tool (http://abstrackr.cebm.
brown.edu/account/login). Conflicts were resolved 
by discussion. Once the screening process was com-
pleted, we recorded and discussed any conclusions 
or judgements on the performance of the methods 
as described by the authors.

The dataset
We illustrate the identified DTA-NMA methods 

using data from a recent Cochrane review by Ko-
liopoulos et al23. This systematic review originally 
included 37 studies comparing 15 different tests for 
the diagnosis of invasive cervical cancer (CIN2+). 
These tests were recoded into three broader index 
tests (183,561 participants): human papilloma-
virus (HPV) DNA, mRNA, and cytology (ASCUS+/ 
LSIL+ threshold) (Appendix 2). Since not all of the 
included models evaluate different test thresholds, 
for studies reporting results on cytology at both 
LSIL+ and ASCUS+ thresholds we selected the lat-
ter. Colposcopy and/or histology was the reference 
standard. The full data set is provided in Appendix 
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2. The grey highlighted studies in Appendix 2 show 
the additional threshold data that could be included 
in the variance component model, compared to 
the remaining models. As commonly encountered 
in DTA studies, the full cross-tabulation data (i.e., 
2x4 joint classification tables by pair of index tests 
in the diseased and non-diseased groups) were not 
available and used the available 2x2 table for each 
index test. 

Figure 1 depicts the network plot of the three index 
tests, and shows that one study assessed cytology, 
32 studies compared the HPV DNA test against cy-
tology, and four studies compared HPV DNA versus 
cytology versus mRNA. 

Figure 1. Network plot of cytology, HPV DNA, and mRNA tests 
for CIN2+. Circles correspond to the different tests, and edges 
represent studies comparing the connected tests. Solid edges 
correspond to triple-test studies, whereas the dashed edges 
correspond to paired-test studies. Black circles represent 
tests studied in single-test studies, whereas white circles 
represent tests studied in comparative studies.

We used the cervical cancer data to assess the 
identified DTA-NMA models, and presented the 
sensitivity and specificity results using forest plots. 
We ranked the tests based on the diagnostic odds 
ratio (DOR) measure that accounts for both sensitiv-
ity and specificity, and the relative sensitivity and 
specificity24. 

Results
The database search yielded 7,190 potentially rel-

evant citations and 41 records were located through 
other sources. In total, 10 articles (7 published 
papers and 3 dissertations) were included in this 
review (Figure 2), which are listed in Appendix 3. 
A summary of the study characteristics included in 
this review is available in Appendix 4.

We identified 4 methods to conduct a DTA-NMA 
of at least three tests using the 2x2 table for each 
index test. All models are Bayesian hierarchical DTA-
NMA approaches. Below we present the identified 
approaches and in a separate section we present the 
comparative results using the illustrative example. 
In Table 1 we summarize the four methods, their 
key properties and the software they were initially 
developed. 

Modelling multiple diagnostic tests

Hierarchical Latent Class Model (Model 1)
Accounting for the use of imperfect reference 

standards, where the estimated accuracy of a test 
may be biased, Menten and Lesaffre have introduced 
a contrast-based DTA-NMA model in a Bayesian 
framework10. Different reference standards, both 
perfect and imperfect, can be used within the same 
model. In a latent class model, the true status of the 
patient is an unobserved variable (diseased or non-
diseased) and this unobserved variable determines 
the probability to test positive or negative. Prior 
knowledge on the accuracy of the reference test(s) 
can be employed to estimate these probabilities. 
The model uses the number of participants showing 
the pattern of outcomes across the tests assessed 
in a study instead of the 2x2 table, and considers 
one pair of sensitivity and specificity per test and 
study. The observed data are assumed to come from 
a multinomial distribution, and all study-specific 
sensitivities and specificities across tests are modeled 
using separate bivariate normal distributions. Using 
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Figure 2. Study flow diagram.

Table 1. Network meta-analysis methods for the comparison of at least three index tests using the 2x2 table.
Model Arm-based Imperfect reference 

standard
Multiple 

thresholds
Software in which 

code is available
Hierarchical Latent Class 
Model[10]

X WinBUGS and Stan

Normal-Binomial 
Model[8]

X Stan

Beta-Binomial Model[7] X Stan

Variance Component 
Model[22]

X X WinBUGS

the logit transformation, the differences (contrasts) 
between the different tests in the network are es-
timated. The model estimates the within-contrast 

heterogeneity across studies. A limitation of the 
method is that correlations between tests from the 
same study are ignored. 
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Normal-binomial Model (Model 2)
Considering that each participant is being mea-

sured across multiple tests within each study, Nyaga 
et al. developed an arm-based two-stage hierarchical 
model using a two-way ANOVA model8. The model 
is based on the single factor design with repeated 
measures, and allows borrowing strength across 
studies to estimate sensitivity and specificity of the 
tests included in the network. Given the study-spe-
cific sensitivity and specificity, at the first stage the 
model uses two independent binomial distributions 
for the true positives among the diseased, and the 
true negatives among the non-diseased participants. 
Using (logit) transformations of sensitivity and 
specificity, a shared random-effects parameter (the 
within-study variance) is considered at the second 
stage, to allow for the intra-study correlation of 
sensitivity or specificity. Two sources of variation 
are considered: a) the within-study heterogene-
ity, due to variation in repeated sampling of study 
results, and b) the between-study heterogeneity, 
due to variation in the true study-specific effects. 
For a zero within-study variance across tests, the 
model reduces to separate bivariate random-effects 
meta-analysis models.

The model is based on the assumption that all 
tests could have been used in each study, but they 
are missing for reasons not related to their outcome 
(missing at random). Hence, under the intention-to-
treat principle, the sensitivities and specificities of the 
unobserved tests are parameters that are estimated 
along with the other parameters in the model based 
on the exchangeability assumption, i.e., sensitivity 
and specificity are similar across studies yet not 
identical. While this assumption may be reasonable 
when a common ‘threshold effect’ exists in all cases, 
assuming common correlation between sensitivity 
and specificity across tests in a NMA of different tests 
at different thresholds may not be valid. 

Beta-binomial model (Model 3)
Nyaga et al. suggested an arm-based NMA model 

based on the bivariate beta distribution7. The use of 
beta distribution allows for a) probabilities to be 
modelled on their natural scale (in contrast with 
Model 2), b) asymmetry in the distribution of prob-
abilities, which is often the case for sparse data, and 
c) direct interpretation of probabilities, since they 
are modelled on their natural scale and no back-
transformations are required. As in Model 2, Model 
3 can incorporate studies irrespective of the studied 
number of arms, and is based on the assumption that 
tests missing from a study are missing at random.

Model 3 is a two-stage model. First, the marginal 
beta distributions for sensitivity and specificity are 
used separately. At a second stage, these distribu-
tions are linked by the Frank copula function25, 
which describes the correlation between sensitivity/
specificity and the overdispersion due to repeated 
measures. Hence, the bivariate beta density describes 
the joint distribution of sensitivity and specificity. 
Different copula densities can be used, which can 
lead to a different bivariate beta density. However, 
the choice of the copula function should be based 
on the relationship between sensitivity and speci-
ficity. While sensitivity and specificity are usually 
negatively correlated, there may be cases in which 
they are positively correlated. In these cases, copula 
functions that model both negative and positive 
correlations are needed. Similar to Model 2, both 
the within-study and between-study variance are 
considered.

Variance component model (Model 4)
Owen et al.26 proposed an arm-based variance 

component model for synthesizing data on differ-
ent tests at multiple thresholds, to account for the 
inherent correlations between multiple pairs of 
sensitivity and specificity data within a study. The 
model is an extension to the normal-binomial model 
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by Nyaga et al.7 and can incorporate constraints on 
threshold effects. For example, assigning constraints 
on increasing test thresholds, higher test thresholds 
are expected to have greater sensitivity but lower 
specificity. The use of threshold constraints can better 
account for the variability due to threshold effects 
and better explain between-study heterogeneity. 

Model 4 is a two-stage approach. At the first stage, 
logistic models are used to specify the arm-specific 
(i.e., at the specific test and threshold) sensitivity 
and specificity. At the second stage, each pair of 
logit sensitivity and logit specificity are drawn from 
a bivariate normal distribution with mean equal to 
the pooled estimates of sensitivity and specificity 
and variance the between-arm covariance matrix 
including the between-arm standard deviation in 
logit transformed sensitivity and specificity, and 
the between-arm correlation. Interactions between 
study and diagnostic test, due to multiple thresholds, 
are included in the model. Constraints on increasing 
test thresholds can also be applied. A limitation of 
the method is that sometimes the covariance matrix 
is unidentifiable and the model does not produce 
results.

Evaluation of the methods in a case-study
We analyzed the NMA of the tests for the diag-

nosis of CIN2+ presented in section 2.2 using the 
four models. For completeness, we also applied 
the popular meta-regression approach with the 
test-type as a covariate27. We fitted the model using 
this covariate term separately for sensitivity and 
specificity assuming different variances for the logit 
transformed sensitivities/specificities. However, 
this method does not account for the within-study 
correlation between tests, and does not properly 
model multi-test studies assuming that each 2x2 
table belongs to a separate study. 

We implemented Models 1, 2, and 3 using Stan28 
and the rstan package29 within R version 3.6.3 using 

the Hamilton Monte Carlo (MHC) simulations. We 
fitted Model 4 in WinBUGS 1.4 software using the 
Markov Chain Monte Carlo (MCMC) simulations. We 
ran four chains with 100,000 draws and removed 
the first 1,000 draws (burn-in). To reduce autocor-
relation, we applied a thinning by keeping every 
10th draw. Convergence was explored through visual 
inspection of trace plots and when R^ was lower than 
1.1. Meta-regression was performed in STATA/MP 
14.0 using the meqrlogit command30.

Figure 3 shows the sensitivity and specificity for 
the cytology, HPV DNA, and mRNA tests for CIN2+ 
using the NMA models. Overall, mRNA has higher 
sensitivity and specificity compared to cytology 
and HPV DNA, but these estimates are associated 
with higher uncertainty possibly due to the small 
number of studies assessing the test. The popu-
lar bivariate meta-regression model indicated the 
highest estimated sensitivity and specificity across 
tests. The beta-binomial NMA model is associated 
with high uncertainty in the underlying estimates, 
accounting probably for the variance in sensitivity 
and specificity that may be underestimated with the 
normal-binomial models. The variance component 
model by Owen et al, allows the estimation of sensitiv-
ity and specificity for the two thresholds LSIL+ and 
ASCUS+ of the cytology test. The model suggests that 
ASCUS+ has higher sensitivity but lower specificity 
compared to LSIL+. Differences in the test results 
across models may be due to varying estimation of 
heterogeneity (Tables 2 and 3).

According to the DOR all models suggest that 
mRNA has the largest likelihood of being the most 
accurate test followed by HPV DNA. The indirect 
comparison results derived from the bivariate meta-
regression and Models 1, 2 and 3 suggest that mRNA 
and HPV-DNA tests performed better compared to 
the cytology test with a range in relative sensitiv-
ity 1.36-1.39 and 1.33-1.35, respectively (Table 2). 
However, both tests performed had similar or worse 
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specificity than cytology (relative specificity range in 
mRNA 0.96-0.98 and in HPV-DNA 0.94-0.95). Model 4 
suggested similar conclusions, as well as that cytology 
ASCUS+ had higher sensitivity than cytology LSIL+, 
but lower specificity. Cytology ASCUS+ had similar 
specificity with mRNA (relative specificity: 0.99 95% 
CI [0.95, 1.01]), but lower specificity than HPV-DNA 
test (relative specificity: 0.95 95% CI [0.94, 0.96]). 

Discussion
In this review we found 10 methodological papers 

presenting or discussing a DTA-NMA method. Only 
four of the methods use the commonly available 
information from DTA studies, that is the true posi-
tive, false positive, true negative and false negative 

values per test and study. The four methods have 
been developed in a Bayesian hierarchical framework 
and relevant coding in Stan28,29 and WinBUGS31 is 
available in each publication.

The four approaches are associated with different 
key properties. First, all but the hierarachical latent 
class10 method are arm-based approaches. It has 
been suggested that arm-based methods outperform 
contrast-based methods, since the latter assume 
all tests are compared to a common reference test 
across studies, and requires at least two diagnostic 
tests to be compared within a study. Second, the arm-
based approaches (i.e. normal-binomial model, beta-
binomial model, and variance component model) 
assume that the missing tests (i.e., arms) are missing 

Figure 3. Forest plot of sensitivity (a) and specificity (b) for the cytology, HPV DNA, and mRNA tests for CIN2+ using dif-
ferent network meta-analysis models.
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Table 2. Indirect estimates and diagnostic odds ratios (DOR). Relative sensitivity and specificity across 
test comparisons.
Model Test rSensitivity CIL CIU rSpecificity CIL CIU DOR

Variance 
Component 
Model

Cytology NA NA NA NA NA NA NA

Cytology ASCUS+ 
(reference)

1.00 1.00 1.00 1.00 1.00 1.00 39.38

Cytology LSIL+ 0.91 0.86 0.95 1.03 1.03 1.04 67.01

HPV-DNA 1.31 1.45 1.22 0.95 0.94 0.96 100.80

mRNA 1.34 1.38 1.27 0.99 0.95 1.01 239.20

Normal-
Binomial Model

Cytology 
(reference)

1.00 1.00 1.00 1.00 1.00 1.00 27.29

Cytology ASCUS+ NA NA NA NA NA NA NA

Cytology LSIL+ NA NA NA NA NA NA NA

HPV-DNA 1.34 1.29 1.40 0.94 0.94 0.95 55.28

mRNA 1.37 1.05 1.49 0.98 0.92 1.01 136.72

Hierarchical 
Latent-Class 
Model

Cytology 
(reference)

1.00 1.00 1.00 1.00 1.00 1.00 27.36

Cytology ASCUS+ NA NA NA NA NA NA NA

Cytology LSIL+ NA NA NA NA NA NA NA

HPV-DNA 1.34 1.28 1.39 0.94 0.93 0.95 53.75

mRNA 1.39 1.03 1.49 0.96 0.79 1.00 90.76

Beta-Binomial 
Model

Cytology 
(reference)

1.00 1.00 1.00 1.00 1.00 1.00 27.15

Cytology ASCUS+ NA NA NA NA NA NA NA

Cytology LSIL+ NA NA NA NA NA NA NA

HPV-DNA 1.33 1.20 1.48 0.94 0.91 0.97 50.49

mRNA 1.36 1.10 1.55 0.98 0.90 1.03 91.78

Bivariate Meta-
Regression

Cytology 
(reference)

1.00 1.00 1.00 1.00 1.00 1.00 44.22

Cytology ASCUS+ NA NA NA NA NA NA NA

Cytology LSIL+ NA NA NA NA NA NA NA

HPV-DNA 1.35 1.28 1.44 0.94 0.91 0.97 103.75

mRNA 1.37 1.11 1.56 0.98 0.90 1.03 189.45

Abbreviations: CIL, low limit of 95% confidence interval; CIH, high limit of 95% confidence interval; DOR, Diagnostic Odds ratio; NA, Not 
Applicable; rSensitivity/rSpecificity, relative sensitivity/specificity.

at random7,8,26. Third, the present contrast-based 
approach (i.e. the hierarchical latent class model) 
is the only method that allows for the inclusion of 
imperfect reference standards10. Fourth, the model 

presented by Owen et al.26 (i.e. the variance compo-
nent model) can synthesize data for different tests 
at multiple thresholds, allowing for the inclusion of 
constraints on increasing test thresholds. Although 
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the variance component model is the only approach 
to account for different thresholds across studies, 
it treats different test-threshold combinations as 
separate tests, and hence full SROC plots cannot be 
drawn. Fifth, all apart form the hierarchical latent 
class10 model account for the inherent correlations 
between multiple pairs of sensitivity and specificity 
data across tests within a study. Sixth, three8,10,26 of 
the four approaches, i.e. the hierarchical latent class, 
normal-binomial, and variance component methods, 
model the logit sensitivities and specificities across 
tests, assuming that the transformed quantities have 
approximately a normal distribution with a constant 
variance. However, when proportions are modelled, 
such as sensitivity and specificity, the constant vari-
ance condition is not always satisfied and variance 
depends on the underlying proportion. Propor-

tions close to 0 or 1 have a variance close to zero, 
whereas proportions close to 0.5 have the highest 
variance value. This also shows that the parameter 
space for proportions and variances is constrained, 
which contradicts the unbounded and independent 
normally distributed parameters. Hence, a natural 
way to model sensitivity and specificity is to use a 
bivariate beta distribution, as shown by Nyaga et 
al.7 in the beta-binomian model, which allows for 
symmetry and accounts properly for overdispersion. 

Additional DTA-NMA methods have been suggested 
using the full cross-tabulations across studies. These 
include multivariate approaches that can adequately 
model the within-study correlations across tests, and 
can be performed both in Bayesian and frequentist 
frameworks11,14,32. Although the DTA-NMA methods 
are an important contribution to the field of diag-

Table 3. Heterogeneity for sensitivity and specificity within each model.

Model
Bivariate Meta-

regression 
Model

Hierarchical 
Latent-Class 

Model (Model 1)

Normal-
Binomial Model 

(Model 2)

Beta-Binomial 
Model  

(Model 3)

Variance-
Component 

Model (Model 4)

Se
n

si
ti

vi
ty

Within-test heterogeneity
Cytology 0.93 - 0.82 0.80

0.64*HPV-DNA 1.13 - 1.12 0.69

mRNA 0.17 - 0.68 0.54

Common between-
study heterogeneity

- - 0.47 0.49 0.45

Within-contrast heterogeneity
Cytology vs HPV-DNA - 1.19 - - -

Cytology vs mRNA - 0.94 - - -

Sp
ec

if
ic

it
y

Within-test heterogeneity
Cytology 0.95 - 0.75 0.75

0.22*HPV-DNA 0.70 - 0.34 0.77

mRNA 0.33 - 0.20 0.53

Common between-
study heterogeneity

- - 0.64 0.30 0.65

Within-contrast heterogeneity
Cytology vs HPV-DNA - 0.91 - - -

Cytology vs mRNA - 0.78 - - -

*Irrespective threshold
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nostic tests, there are several limitations associated 
with these models. A key barrier of the methods is 
that as the number of diagnostic tests increases, the 
number of additional parameters to estimate also 
increases, and in these cases, complexity and con-
vergence issues with multivariate approaches can 
be raised. Also, when a small number of studies is 
available, it might be challenging to estimate all the 
parameters of the model. The main limitation across 
all models is the lack of their availability in popular 
statistical software, which increases complexity of 
their implementation. However, the choice of the 
most appropriate model rests on the availability of 
complete data, use of similar thresholds and refer-
ence standards, number of comparator tests, and 
number of studies across test comparisons.

For the diagnosis of CIN2+ we found that the 
mRNA test was the most accurate test followed by 
HPV-DNA. However, both sensitivity and specificity 
of the mRNA test were associated with the highest 
uncertainty across all models. Overall, precision and 
estimation of between-study and within-study vari-
ability varied across models due to the differences 
in their key properties. Evaluation of the compara-
tive effectiveness and safety that use primary HPV 
screening in comparison to cytology-based screening 
in asymptomatic women is another key question in 
cervical cancer33. 

This is the first study summarizing the available 
DTA-NMA methods. We describe the key method-
ological characteristics of the DTA-NMA methods 
through a case example for CIN2+. To date, there 
are no other reviews in the literature comparing 
DTA-NMA methods, and hopefully our findings will 
facilitate investigators in forming their own judge-
ments about the most appropriate method for their 
needs. We also expect that this review will help 
increase application of the methods in empirical 
DTA networks.

A limitation of our review is that we may have not 

retrieved all DTA-NMA methods, as some studies 
may have not been indexed using the search terms 
we selected. In order to capture the majority (if not 
all) of the DTA-NMA methods we developed a very 
sensitive literature search. Another limitation is 
that although we identified 10 eligible studies, we 
were able to assess only four DTA-NMA methods 
using the 2x2 table of the results of each index test 
against the reference standard. Methods requiring 
the complete cross-tables can rarely be applied in 
empirical examples, since this information is usu-
ally missing from the DTA publications. Finally, we 
explored the performance of the methods using a 
single case study. A comprehensive empirical com-
parison of all the DTA-NMA models to evaluate key 
properties of the methods would be a valuable ad-
dition to the literature. Simulation studies are also 
required to assess the performance of the methods 
and indicate which methods perform best in real-life 
meta-analytical scenarios. 

Conclusions
To date, four different DTA-NMA methods have 

been suggested to model at least three tests using 
the 2x2 table for each index test. All models were 
developed in a Bayesian framework, but they are 
associated with different properties and may lead to 
different results, especially for sparse data. The choice 
of a DTA-NMA method for the comparison of multiple 
diagnostic tests may depend on the available data, 
e.g., threshold data, as well as on clinically-related 
factors that need to be considered in decision-making. 
Our empirical example on the diagnosis of CIN2+ 
showed that estimation and precision in sensitivity 
and specificity may vary depending on the choice 
of the method. Overall, we found that both mRNA 
and HPV-DNA tests outperformed cytology, and that 
the cytology ASCUS+ was associated with higher 
sensitivity but lower specificity when compared 
with cytology LSIL+.
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